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The Virtual Brain (TVB) is now available as open-source cloud ecosystem on EBRAINS, a 
shared digital research platform for brain science. It offers services for constructing, 
simulating and analysing brain network models (BNMs) including the TVB network 
simulator; magnetic resonance imaging (MRI) processing pipelines to extract structural and 
functional connectomes; multiscale co-simulation of spiking and large-scale networks; a 
domain specific language for automatic high-performance code generation from user-
specified models; simulation-ready BNMs of patients and healthy volunteers; Bayesian 
inference of epilepsy spread; data and code for mouse brain simulation; and extensive 
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educational material. TVB cloud services facilitate reproducible online collaboration and 
discovery of data assets, models, and software embedded in scalable and secure workflows, 
a precondition for research on large cohort data sets, better generalizability and clinical 
translation. 
 
Scientific studies are often difficult to 
replicate and findings often do not 
generalize in light of additional data 1,2. The 
data and the computational steps that 

produced the findings as well as the 
explicit workflow describing how to 
generate the results were identified as the 
minimal components for independent 
regeneration of computational results 3. 
EBRAINS (European Brain Research 
INfrastructureS) is an open brain research 
platform that makes data, tools and results 
accessible to everyone within an 
environment that promotes reproducible 
work. It offers cloud services for 
collaborative online research, databases 
with annotated and curated data of many 
modalities, atlases of human and rodent 

brains, data processing workflows, 
supercomputing resources, neuromorphic 
systems, and virtual robots. EBRAINS was 
developed by the Human Brain Project 

(HBP), a research initiative funded by the 
European Commission with the mission to 
decode the human brain 4,5. TVB cloud 
services (Tables 1, 2) were developed by 
the HBP subproject "The Virtual Brain" in 
collaboration with the two HBP partnering 
projects TVB-Cloud (virtualbraincloud-
2020.eu) and TVB-CD (bit.ly/3ogLYtb). To 
provide supercomputing resources, the 
HBP offers as part of the Interactive 
Computing E-Infrastructure project access 
to compute and storage resources of the 
Fenix infrastructure (fenix-ri.eu), a 
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Figure 1. TVB on EBRAINS cloud ecosystem. Brain simulation and neuroimaging require personal data applicable 
to data protection regulation. Encryption, sandboxing and access control are used to protect personal data. 
EBRAINS provides core services: 'Drive' for hosting and sharing files; 'Wiki' and 'Office' to create workspaces and 
documents for collaborative research; 'Lab' for running live code in sandboxed JupyterLab instances; 'OpenShift' 
for orchestrating services and resource management; 'HPC' are supercomputers for resource-intensive 
computations. Services interact via RESTful APIs and use UNICORE for communication with supercomputers. 
Services are deployed in the form of Web GUIs, container images, Python notebooks, Python libraries and high-
performance machine codes. Input and output data can be loaded from and stored into the EBRAINS Knowledge 
Graph using openMINDS-compliant metadata annotations to enable efficient sharing and re-use. The connectors 
show interactions between different components (colours group connectors for different deployments). 
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network of five European supercomputing 
centres. 
TVB services use EBRAINS core services for 
deployment (Figure 1). The 'Collaboratory' 
(Supplementary Note: The EBRAINS 
Collaboratory) hosts light-weight 
workspaces, called 'collabs', where 
research teams can exchange data and 
work together on Office or Wiki 
documents, secured with access control. 
'Lab' provides sandboxed JupyterLab 
instances for developing applications and 
running code. Lab notebooks provide a 
powerful interface to EBRAINS services, for 
data transfer as well as configuring and 
executing jobs on supercomputers. Data 
can be found and accessed via the 
'KnowledgeGraph' (KG), which provides a 
graphical user interface (GUI) and 
Application Programming Interface (API) 
for searching, inserting, editing, querying, 
aggregating, filtering and visual 
exploration of the data base. KG uses 
controlled vocabularies and ontologies, 
mapped with existing neuroimaging and 
brain simulation ontologies 
(Supplementary Note: Metadata 
annotations). Professional curation, 
persistent DOIs, licensing, versioning, data 
sharing agreements and protected 
workflows enable secure, interoperable 
and reusable sharing of data and services. 
Containerized workflows and backend 
supercomputing resources enable 
reproducible research that scales to the 
demands of the project. A RESTful API is 
used for connecting different cloud 
components, authentication, data transfer 
and supercomputer job scheduling. Atlas 
Services provide common spatial reference 
spaces including a multilevel atlas of the 
human brain as well as the Waxholm Space 
rat brain atlas 6,7. The Multilevel Human 
Brain Atlas uses the Julich-Brain 
probabilistic cytoarchitectonic maps 8 to 
link with template spaces such as BigBrain 
9 at the micrometer scale and MNI 10 at 

millimeter scale, and combines them with 
imaging-based maps of function 11 and 
connectivity 12 to link a growing set of 
multimodal feature descriptions of the 
human brain, in order to capture brain 
organization in its different facets. 
 
Results 
 
The Virtual Brain 
 
TVB (thevirtualbrain.org) is an open-source 
BNM simulator that combines 
experimental data with neuron theory for 
brain research (Supplementary Note: Brain 
simulation with TVB) 13,14. A BNM is a 
computer model for simulating brain 
activity based on systems of differential 
equations that are coupled by a 
reconstruction of a brain's structural 
connectome (SC), the white-matter axon 
fiber bundle network that interconnects 
brain areas 15. Neural populations are 
simulated by neural mass models (NMM), 
i.e., mean field theories on coupled 
neurons. SCs can be reconstructed from 
diffusion-weighted MRI (dwMRI) data 
using the TVB Image Processing Pipeline or 
found with KG. 
BNMs simulate neural activity like 
membrane voltage fluctuations, synaptic 
current flow, or spike-firing, which is used 
to predict signals like functional MRI (fMRI) 
or electroencephalograms (EEG). 
Predicted signals can be compared with 
empirical measurements to evaluate and 
optimize the model or to analyse the 
underlying model mechanisms. TVB can be 
directly used from a web GUI (Table 1), 
without the need to install further 
software or to have a specific operating 
system, computing environment or 
hardware. In addition, compiled 
standalone versions for Linux, Windows 
and Mac OS as well as execution-ready 
container images are freely available for 
download. TVB can also be used as a  
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Service Function URLs 
The Virtual 
Brain  

Brain network 
simulation 

Web-App 
   thevirtualbrain.apps.hbp.eu 
Collab 
   wiki.ebrains.eu/bin/view/Collabs/the-virtual-brain 
End-to-end use case 
   wiki.ebrains.eu/bin/view/Collabs/user-story-tvb 
Source code 
   github.com/the-virtual-brain/tvb-root 
Python libraries 
   tvb-library 
   tvb-framework 
Container image 
   hub.docker.com/r/thevirtualbrain/tvb-run 

 

TVB Image 
Processing 
Pipeline 

Connectome 
analysis 

Web-App 
   tvb-pipeline.apps.hbp.eu 
Collab 
   wiki.ebrains.eu/bin/view/Collabs/tvb-pipeline 
Source codes 
   github.com/BrainModes/tvb-pipeline-sc 
   github.com/BrainModes/fmriprep 
   github.com/BrainModes/tvb-pipeline-converter 
Container images 
   hub.docker.com/r/thevirtualbrain/tvb-pipeline-sc 
   hub.docker.com/r/thevirtualbrain/tvb-pipeline-fmriprep 
   hub.docker.com/r/thevirtualbrain/tvb-pipeline-converter 

 

Multiscale co-
simulation 

Two toolboxes 
for concurrent 
simulation of 
large-scale 
and spiking 
networks 

Web-App (TVB-Multiscale) 
   tvb-nest.apps.hbp.eu 
Collab (TVB-Multiscale) 
   wiki.ebrains.eu/bin/view/Collabs/the-virtual-brain-multiscale 
Collab (Parallel CoSimulation) 
   wiki.ebrains.eu/bin/view/Collabs/co-simulation-tvb-and-nest-high-
computer 
Source code (TVB-Multiscale) 
   github.com/the-virtual-brain/tvb-multiscale 
Source code (Parallel CoSimulation) 
   github.com/multiscale-cosim/TVB-NEST 
Container image (TVB-Multiscale) 
   hub.docker.com/r/thevirtualbrain/tvb-nest 

 

TVB-HPC Automatic 
code 
generation 

Collab 
   wiki.ebrains.eu/bin/view/Collabs/rateml-tvb/ 
Source code 
   github.com/the-virtual-brain/tvb-root 

 

Fast_TVB Parallelized 
ReducedWong
Wang 

Collab 
   wiki.ebrains.eu/bin/view/Collabs/fast-tvb 
Source code 
   github.com/BrainModes/fast_tvb 
Container image 
   hub.docker.com/r/thevirtualbrain/fast_tvb 

 

Bayesian 
Virtual 
Epileptic 
Patient 

Epilepsy 
modelling 

Collab 
   wiki.ebrains.eu/bin/view/Collabs/bayesian-virtual-epileptic-patient 
Source code 
  github.com/ins-amu/BVEP 
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TVB Mouse 
Brains 

Mouse brain 
simulation 

Collabs 
   wiki.ebrains.eu/bin/view/Collabs/tvb-mouse-brains 
   wiki.ebrains.eu/bin/view/Collabs/mouse-stroke-brain-network-model/ 

TVB-ready 
dataset  
 

SC, FC, and 
fMRI from 
tumour 
patients and 
controls 

DOI 
   10.25493/1ECN-6SM 
URL 
   kg.ebrains.eu/search/instances/Dataset/a696ccc7-e742-4301-8b43-
d6814f3e5a44 

openMINDS 
metadata for 
TVB-ready 
data 

Metadata in 
JSON-LD 
format 

Collab 
   wiki.ebrains.eu/bin/view/Collabs/openminds-metadata-for-tvb-
ready-data 
openMINDS schema 
   github.com/HumanBrainProject/openMINDS 

 

TVB atlas 
adapter 

Brain atlas Collab (development version) 
   wiki.ebrains.eu/bin/view/Collabs/sga3-d1-1-showcase-1 
Visualizer 
   brainsimulation.org/atlasweb_multiscale 

 

INCF TVB 
training space 

Education and 
training 

URL 
   training.incf.org/collection/virtual-brain-simulation-platform 

Table 1. TVB cloud services and URLs leading to their main entry points. 

 
Cloud service Publications 
The Virtual Brain  13,14,62 
TVB Image Processing Pipeline 38,63 
Fast_TVB 51,64–66 
Bayesian Virtual Epileptic Patient 22,23 
TVB Mouse Brain 24,26 
TVB ready datasets 29,30 
INCF TVB training space 67 

Table 2. Exemplary publications using software, workflow or data sets underlying different TVB cloud services. 

 Python library for programming--locally, 
as well as in the EBRAINS Lab (Figure 1). 
TVB usage is introduced through Jupyter 
notebooks, explanatory videos and 
technical documentation. The main 
documentation is hosted at 
docs.thevirtualbrain.org. 
 
TVB Image Processing Pipeline 
 
The TVB Image Processing Pipeline takes 
anatomical, functional and diffusion MRI 
as input and generates SCs, region-average 
fMRI time series, functional connectivity 
(FC), brain surface triangulations, 
projection matrices for predicting EEG, and 
brain parcellations as output. The outputs 
can be used for analysis or for direct 
upload to TVB. Processing steps are 
performed by containerized workflows, 

orchestrated by Python scripts, for flexible 
adaptation. The pipeline combines three 
BIDS Apps ("Brain Imaging Data Structure", 
Gorgolewski et al. 16) that can be run via 
command-line interface. The container 
codes, respectively images, received 
version numbers and are hosted at GitHub, 
respectively Docker Hub, for change 
tracking (Table 1). Jupyter notebooks 
explain how the TVB Image Processing 
Pipeline can be executed on a 
supercomputer from a web browser using 
access control, encryption and sandboxing 
for protection of personal data. 
 
Multiscale Co-Simulation 
 
Multiscale Co-Simulation are two Python 
toolboxes for simulating brain networks 
where large-scale NMMs interact with 
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models of individual neurons or neuron 
networks (Table 1). TVB is used to simulate 
the large-scale NMMs, while NEST 17 is 
used to simulate the small-scale neurons. 
The toolboxes provide two interfaces to 
couple the two simulators, using the 
programmatic Python interface of TVB and 
PyNEST 18, a Python wrapper for NEST. 
Populations interact with neurons by 
coupling NMM state variables with single 
neuron state variables or parameters. For 
example, a TVB state variable that 
simulates ongoing population firing can be 
used to inject spikes into a NEST spiking 
network, e.g., by sampling spike times 
from a probability distribution in 
dependence of the instantaneous firing 
rate of the NMM. Vice versa, the mean 
activity of a NEST neuron network may be 
used to inform ongoing inputs to a TVB 
NMM. Coupling may be unidirectional, 
e.g., to study effects of large-scale inputs 
on small-scale spiking-network activity, or 
bidirectional, to study how both scales 
mutually interact. The TVB-multiscale 
project is under ongoing development 
currently focussing on postulating and 
validating coupling scenarios between the 
scales, optimizing the user interfaces as 
well as optimizing performance via 
parallelization and better interprocess 
communication. TVB-multiscale can be 
downloaded as standalone container 
image or used on EBRAINS from Jupyter 
notebooks (Table 1). 
 
High-Performance implementations of TVB 
 
Brain modelling often requires the 
exploration of high-dimensional 
parameter spaces and thus simulation 
software need to be efficient and able to 
run on parallel architectures. Numba, a 
compiler that translates a subset of Python 
and NumPy into high-performance 
machine code, is used for faster execution 
of TVB. However, the central integration 

loop is implemented in Python for 
modularity and generality and therefore 
constitutes a bottleneck for simulation 
speed, which is why two dedicated high-
performance implementations were 
created. 
TVB-HPC automatically produces high-
performance codes for CPUs and GPUs 
using the domain-specific language 
RateML for model specification in order to 
simplify the process of implementing 
optimized BNM simulation codes. RateML 
is based on the domain-specific language 
'LEMS' 19, which allows for the declarative 
description of model components in a 
concise XML representation. TVB-HPC is 
part of the main TVB Python toolbox (Table 
1). 
Fast_TVB is a specialized high-performance 
implementation of the 
ReducedWongWang model 20, written in C, 
that makes use of "Single Instruction, 
Multiple Data" operations, explicit 
memory management and C pointers to 
efficiently use CPU resources. Fast_TVB's 
high efficiency (Supplementary Figure 6) 
enables to perform dense parameter space 
explorations or to simulate high-
dimensional models with millions of nodes. 
The code uses multithreading to 
simultaneously perform the processing of 
one BNM on multiple processors. Fast_TVB 
is deployed as a standalone container 
image (Table 1). 
 
Bayesian Virtual Epileptic Patient 
 
The Bayesian Virtual Epileptic Patient 
(BVEP) uses Bayesian inference to 
compute posterior probability 
distributions for parameters of TVB's 
Epileptor NMM in order to study the 
spread of epileptic seizures 21,22. The 
approach applies Bayes' theorem on prior 
distributions obtained from empirical data 
(e.g., a patient’s SC, or lesions detected in 
MRI) and model simulations, taking into 
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account the likelihood for these 
observations. Estimating the excitability 
parameter of an Epileptor-BNM for every 
brain region yields a map of 
epileptogenicity to guide clinical decision-
making. The excitability parameter 
controls whether an Epileptor NMM shows 
epileptogenic behavior and the estimated 
values are used to classify brain regions 
into three categories: epileptogenic zones 
(EZ), which can autonomously trigger 
seizures; propagation zones (PZ), which do 
not trigger seizures autonomously but may 
be recruited during the seizure evolution; 
and healthy zones (HZ), where no seizures 
occur. Priors for the excitability parameter 
can express clinical hypotheses or 
empirical observations (e.g., in a seizure 
region the HZ range can be excluded from 
the prior). Simulation results are compared 
with empirical measurements (e.g., EEG 
from implanted electrodes) and model 
selection with cross-validation metrics are 
computed to evaluate clinical hypotheses 
and to assess the model's ability to predict 
new data. The workflow was successfully 
used to infer the spatial maps of 
epileptogenicity from ground-truth 
synthetic data for symptomatic and 
asymptomatic seizures 23. The currently 
running EPINOV clinical trial (epinov.com) 
investigates informing clinical decisions 
with virtual patient studies to improve 
surgery outcome. To run BVEP, users may 
follow the instructions in the collab or the 
source code repository (Table 1).  
 
TVB Mouse Brains 
 
The Virtual Mouse Brain (TVMB) extends 
TVB with tractography-based as well as 
tracer-based mouse SC 24. Tracer-based SC 
was exported from the Allen Mouse Brain 
Connectivity Atlas 25 using the Allen 
Connectivity Builder. Two use cases of 
TVMB are demonstrated on EBRAINS 
(Table 1). The first use case performs a 

bifurcation analysis to show the existence 
of multistability in mouse BNMs and 
compares FC simulated using tracer-based 
SC versus FC using dwMRI-based SC 26. The 
second use case ("Stroke Mouse Brain") 
constructs custom mouse SC at different 
resolutions (the maximum resolution of 50 
μm yields 540 brain regions), fits the 
working point of a mouse BNM and 
explores ways to simulate stroke and 
rehabilitation in mice 27. 
 
TVB-ready data 
 
The EBRAINS KG provides users with TVB-
ready reference data sets in BIDS format 
from tumor patients and matched control 
participants. The data set contains region-
average fMRI time series, FC, and SC from 
31 brain tumor patients before and after 
surgery, and 11 healthy controls 28. 
Planning for tumor surgery involves 
delineating eloquent tissue to spare by 
analyzing neuroimaging data like fMRI and 
dwMRI data. Instead of analyzing these 
modalities independently, BNMs provide a 
novel way to combine their information.  
Optimized parameters in presurgical 
models differentiated between regions 
directly affected by a tumor, regions 
distant from a tumor and regions in a 
healthy brain, which may help to better 
delineate eloquent tissue 29. Furthermore, 
it was found that "virtual neurosurgeries", 
where the patients' actual surgeries were 
simulated, improved the fit with 
postsurgical brain dynamics, which may 
allow presurgical exploration of different 
surgical strategies 30. 
 
TVB atlas and data adapters 
 
Adapters connect TVB with data and 
software (Table 1; Supplementary Note: 
TVB atlas and data adapters). Among 
others, TVB has interfaces with MATLAB, 
the Brain Connectivity Toolbox, and the 
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Allen Brain Atlas 
(docs.thevirtualbrain.org). Adapters are 
under development that connect TVB with 
the Human Brain Atlas, Knowledge Graph 
and Human Intracerebral EEG Platform to 
inform BNM parameterization and to 
compare simulation results with empirical 
data (Table 1). The Human Brain Atlas 
characterizes brain regions with a growing 
set of multimodal data features, including 
transmitter receptor densities 31, cell 
distributions, and physiological recordings, 
based on the Julich-Brain cytoarchitectonic 
maps 8. Aligned with standard brain 
templates, the Human Atlas can be 
registered with individual brains to export 
multimodal microstructural "fingerprints" 
that can be used to set the parameters of 
BNM nodes. For example, density 
measurements for 16 receptors will be 
provided for each brain region, and high-
resolution tractography maps (full brain, 
post-mortem 200 μm isotropic diffusion 
MRI and 60 μm isotropic 3D Polarised Light 
Imaging) will increase the reliability of SC 
32,33. As data adapter, it is planned to link 
intracranial electrophysiology recordings 
with the respective Julich-Brain regions to 
set parameters based on direct 
measurements of effective connectivity 
and transmission delays from stimulation 
experiments 34. A viewer was implemented 
to visualize different atlas maps on the 
cortical surface (Table 1). 
 
INCF training space 
 
The INCF (International Neuroinformatics 
Coordination Facility) training space holds 
a dedicated collection for TVB with didactic 
use cases, video tutorials, notebooks and 
example data sets (Supplementary Note: 
INCF training space). INCF's TVB EduPack 
module (Table 1) gives a thorough 
introduction into work with TVB in general 
and EBRAINS cloud services in particular, 
helping users to reproduce several TVB 

publications. Tutorials consist of short 
video lectures, scripting tutorials with 
Jupyter notebooks and code. TVB Made 
Easy is a series of short lectures that 
introduce working with TVB in a clinical 
context, e.g., predicting recovery after 
stroke and simulating epilepsy patient 
brains. Brief lectures describe methods, 
results and ways to replicate the principal 
ideas of the articles with TVB. 
 
Data protection in the TVB on EBRAINS 
cloud 
 
Biomedical research is facing challenges 
because many methods lack technical 
infrastructure to protect the privacy of 
personal data. Problematically, biomedical 
data cannot be easily anonymized or 
pseudonymized such that all potentially 
identifiable information are removed, and 
potential re-identification is excluded 35–37. 
To use cloud services, personal data has to 
be transmitted over the internet and other 
open networks and is stored and 
processed on shared supercomputers, 
which poses the risk for unauthorised 
access of the data. The European Union's 
General Data Protection Regulation 
(GDPR) and similar international and 
national laws impose restrictions on the 
processing of personal data including the 
storage and sharing of data.  From the 
outset of the project, at the development 
stages, Article 25 GDPR ("data protection 
by design and by default") requires 
partners to implement the appropriate 
technical and organizational measures, to 
ensure adherence with the principles of 
data protection at set out in Article 5 GDPR 
and more generally a commitment to 
GDPR compliant data processing to 
safeguard the rights and freedoms of the 
data subjects as set out in the GDPR. A 
principle means of ensuring GDPR 
compliant data processing is the 
implementation of appropriate technical 
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and organizational measures to ensure a 
level of security appropriate to the risk of 
the processing as set out in Article 32 
GDPR. An assessment of the most suitable 
security measures must consider the 
context and purposes of processing in 

relation to the risk posed to the rights and 
freedoms of the data subject. Having made 
this assessment, the appropriate security 
measures are realized for TVB-on-EBRAINS 
by implementing access control, 
encryption and sandboxing (Figure 2).

 

 
Figure 2. Securing personal data processing workflows in shared environments. Personal input data is encrypted 
with public key cryptography on the data controller's computer before upload to the cloud. The key pair for 
upload is generated within a sandboxed process at the final processing site and the private key never leaves the 
sandbox. All processing is performed in the sandbox and personal data is never written outside the sandbox in 
unencrypted form. A public key generated by the data controller is used for returning encrypted results. 

EBRAINS access control uses passwords 
and cryptographic keys to prevent 
unauthorized access, to provide secure 
delegated access for connecting different 
cloud services, as well as to provide single 
sign-on. Keycloak is used for identity and 
access management (IAM), i.e., user 
registration, management and permission 
control. The OpenID Connect protocol is 
used for authentication--confirming the 
identity of a user--based on OAuth 2.0 
specifications for delegating and conveying 
authorization decisions. OAuth 2.0 is a 
widely adopted standard for access 
delegation and user authorization flows 
without the need for sharing credentials, 
which is realized by issuing cryptographic 
tokens that provide ongoing access to 
protected resources on behalf of a user. 
With this framework EBRAINS applications 
can limit the scope of services accessible by 
a user. 

Encryption is a fundamental tool for data 
privacy, ensuring that data becomes 
unintelligible without decryption key. 
Therefore, data is better protected if it is 
encrypted at all times with the only 
exception being during the time of the 
processing, where it is only decrypted for 
the parties involved; additionally, during 
the processing it may exist in unencrypted 
form only within isolated memory and file-
system locations that are invisible from the 
host (sandboxes). TVB-on-EBRAINS 
workflows (Figure 2) require that personal 
data must already be encrypted on the 
data controller's computer before being 
uploaded to the cloud. Public key 
cryptography is used in a way that the 
secret key for data upload is created ad-
hoc at the beginning of the workflow and 
remains the entire time in a sandboxed 
process at the final processing site. 
Processing results are never written out in 
unencrypted form, except in temporary 
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filesystem trees that are invisible from the 
host and automatically cleaned up when 
the last process exits. For upload to the 
TVB Web GUI personal data is first 
encrypted with a public key and 
immediately after arrival in the cloud 
decrypted and again encrypted with a 
freshly created secret key to increase 
protection in case that the key for data 
upload is leaked. The data stays encrypted 
until an authorised user opens the 
respective project in its private TVB Web-
GUI space. Each project is encrypted with a 
different key and the public key for initial 
encryption is regularly changed. For 
resource-intensive simulations the 
encrypted data is forwarded to 
supercomputing systems and only 
decrypted after the associated job on the 
compute nodes was started. Furthermore, 
the decryption key is sent from the TVB 
Web-GUI instance directly to the running 
backend compute process on the 
supercomputer using an authenticated 
security token; the key is only kept in 
memory, and never written to the file 
system. See Supplementary Note: Data 
protection in the TVB on EBRAINS cloud for 
more information. 
 
Shared responsibility & compliance  
 
In order to use TVB cloud services a user 
must agree to terms that clarify their 
personal responsibility regarding the 
compliance with the GDPR 
(ebrains.eu/terms). These terms 
transparently clarify the nature of security 
precautions, contact persons, personal 
responsibilities of the user, monitoring, 
logging and passing of information to third 
parties. A detailed risk assessment and 
technical documentation are currently in 
preparation to clarify inherent risks of 
open networks and shared computing 
systems and the taken countermeasures. 
Security measures were put in place to 

prevent that users are able to access 
another user's data if not explicitly shared. 
The system is designed such that the user 
is the only person that is in control over the 
data while in the cloud. From a GDPR point 
of view they are therefore considered to be 
data controllers (Article 26 GDPR), which is 
the person determining the (essential) 
means and purposes of the processing, 
Hence, the parties using the cloud do not 
cede their legal responsibilities for data 
protection—on the contrary they remain 
unreservedly with the user as the data 
controller, because the technical and 
organisational mechanisms, that were put 
in place to prevent unauthorized access, 
guarantee their sole and independent 
determination on the purposes and means 
of the data processing operation. 

Discussion 
 
TVB cloud services were developed to 
lower the barriers to brain simulation and 
connectome analysis workflows and to 
enhance their reproducibility. All codes are 
open source and available for download 
from GitHub. Software is packaged in 
platform-independent container images 
that can be directly used without the need 
to install dependencies. Most software and 
data components were peer-reviewed, 
and results published in academic journals 
(Table 2). To ensure long-term 
accessibility, software libraries from third-
party developers were forked and 
archived. Codes and images are versioned 
for reproducibility; legacy codes and 
images remain available in their 
repositories. By reporting the application 
name and version in a publication, it 
becomes possible to exactly replicate the 
used workflow, which counteracts 
variability between software versions and 
lack of reporting. Comprehensive 
documentation in the form of manuals, 
tutorials, lectures, Jupyter notebooks, 



 

 11 

demo data, workshops, videos, use cases, 
mailing lists and support contacts provide 
efficient and didactic dissemination of 
knowledge and support. EBRAINS core 
services enable to map and organize 
projects into a persistent and replicable 
structure at a central and secure place, 
which makes it easier to pick up complex 
projects at a later time. The flexibility of 
the platform and its focus on community-
driven research enable rapid adoption of 
advances in brain simulation and 
connectomics, as well as correction of 
errors. Technical and organisational 
security mechanisms are designed to 
provide highest data protection standards, 
while at the same time providing flexibility 
to enable state-of-the-art research. To 
keep the high quality of the cloud services, 
ongoing and future efforts are directed 
towards the continuous integration of 
improved community standards and best 
practices. The TVB on EBRAINS ecosystem 
can be transferred to other Cloud 
environments within the European Open 
Science Cloud or beyond. Thus, it serves as 
a reference architecture for secure 
processing and simulation of neuroscience 
data in the cloud (Figure 1 and 
Supplementary Discussion). 
 
Methods 
 
TVB Image Processing Pipeline 
 
The EBRAINS TVB Image Processing 
Pipeline combines three BIDS Apps (see 
Supplementary Note: BIDS Apps) to yield 
an updated version of our brain network 
model construction workflow 38. BIDS Apps 
are brain imaging software packages that 
understand BIDS datasets and that are 
deployed as portable container images 
16,39: 

• thevirtualbrain/tvb-pipeline-sc for 
diffusion MRI tractography, 

• thevirtualbrain/tvb-pipeline-
fmriprep for fMRI preprocessing, 
and 

• thevirtualbrain/tvb-pipeline-
converter for data privacy and 
conversion of the results of the 
other two containers into TVB and 
BIDS formats. 

All three container images are provided on 
TVB's main Docker Hub Repository 
hub.docker.com/r/thevirtualbrain. The 
code for the container tvb-pipeline-sc was 
cloned and modified from the BIDS App 
MRtrix3_connectome (github.com/BIDS-
Apps/MRtrix3_connectome) and tvb-
pipeline-fmriprep was cloned from the 
neuroimaging software fmriprep 
(github.com/poldracklab/fmriprep), which 
is why we recommend to acknowledge 
MRtrix3, MRtrix3_connectome 40,41 and 
fmriprep 42 when using these workflows. 
Containerization makes it easier to deploy 
these workflows on different 
architectures, as they rely on a number of 
dependencies. 
The overall workflow is coordinated by a 
central program that orchestrates the 
execution of the three containers on a 
supercomputer and that ensures that 
personal data is encrypted at all times, 
except for the duration of the processing 
and then only in the main memory of a 
sandboxed process (Figure 2). All 
processing of personal data on the 
supercomputer happens inside the 
sandbox and intermediary data is only 
written out into a temporary file system 
that is invisible from the host. After a data 
controller authenticated with the EBRAINS 
platform and initiated a processing 
workflow, EBRAINS authenticates with the 
supercomputer and starts a sandboxed 
process that is isolated from the host using 
Bubblewrap 
(github.com/containers/bubblewrap), 
which is a sandboxing tool based on Linux 
user namespaces that allow to give 
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unprivileged users container features. 
Bubblewrap creates a new mount 
namespace where the root is on a 
temporary filesystem that is invisible from 
the host and that will be automatically 
cleaned up when the last process exits. 
Shortly before the upload of the encrypted 
data a pair of public and private keys is 
generated, and the public key is forwarded 
to the data controller to encrypt the 
password for the encrypted input data. The 
data themselves is encrypted on the data 
controller's computer with AES-256 
encryption using pyAesCrypt 
(pypi.org/project/pyAesCrypt). After the 
encrypted data and password were 
uploaded to the supercomputer, the 
password and data are decrypted into the 
sandboxed temporary file system. The 
secret private key for decryption is only 
held in the main memory of the sandboxed 
process and never written out. During the 
entire processing intermediate results are 
only written into the temporary filesystem 
that is invisible from the host. The outputs 
of the workflow are encrypted with a 
public key that was generated on the data 
controller's computer and all input and 
intermediate data of the workflow are 
deleted, the sandbox stopped, and the 
encrypted results returned to the data 
controller. 
Processing of functional or diffusion-
weighted MRI requires at least one high-
resolution T1-weighted structural MRI for 
parcellating the brain. If the input data was 
not corrected for susceptibility distortions, 
then additionally phase-reversed images of 
the B0 field in dwMRI data and fieldmaps 
for fMRI are required. Please see the 
Supplementary Note: Exemplary input 
data for more information on input data 
sets. 
 
thevirtualbrain/tvb-pipeline-sc 
 

Diffusion modelling and tractography are 
carried out by MRtrix3, which is a powerful 
and actively developed tractography 
toolbox 41. Notably, it includes methods to 
increase the accuracy of tractography and 
reducing false positives by removing tracks 
that are anatomically implausible, called 
Anatomically-Constrained Tractography 43. 
In order to estimate region-to-region 
coupling strengths, the MRtrix3 programs 
SIFT, respectively SIFT2, re-weight each 
track in the reconstructed tractogram such 
that streamline densities become 
proportional to the cross-sectional area 
connecting each pair of brain regions 44.  
The workflow is controlled by a Python 
script that can be modified according to 
the research question. In the following we 
describe the default setup of the workflow 
as it is currently implemented. As input, 
the workflow requires T1-weighted and 
diffusion-weighted MRI data, as well as at 
least one phase-reversed dwMRI of the B0 
field for susceptibility distortion 
correction. Outputs are whole-brain 
tractograms and SC. In between, the 
following processing steps are performed. 
First, dwMRI is denoised by removing 
noise-only principal components 45 using 
dwidenoise. Next, Gibbs ringing artifacts 46 
are removed using mrdegibbs, and 
distortions are corrected with dwipreproc: 
eddy current-induced distortion correction 
and motion correction is performed using 
FSL eddy, and (optionally) susceptibility-
induced distortion correction is performed 
using FSL topup. In the next step, B1 bias 
field inhomogeneities are corrected using 
dwibiascorrect and a brain mask for DWI is 
created using dwi2mask and maskfilter. 
After computing fractional anisotropy 
maps using dwi2tensor, dwi2response is 
used to estimate the response functions 
for spherical deconvolution. To obtain 
fiber orientation distributions, spherical 
deconvolution is performed with dwi2fod. 
For inter-modal registration, the workflow 
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extracts the brain with ROBEX and 
performs a bias field correction on the T1 
image in its original space using ANTS 
N4BiasFieldCorrection. Contrast-matched 
images for inter-modal registration 
between DWIs and T1 are generated using 
mrhistmatch and the T1w MRI is registered 
to DWI using mrregister. The MRtrix 
program 5ttgen in conjunction with FSL or 
FreeSurfer is then used to segment tissues 
into cortical grey matter, sub-cortical grey 
matter, white matter and cerebrospinal 
fluid. Next, cortical gray matter 
parcellations are obtained. For the atlases 
'desikan', 'destrieux', and 'hcpmmp1', the 
parcellation information is taken from 
FreeSurfer's recon-all output. For the 
atlases 'aal', 'aal2', 'craddock200', 
'craddock400', and 'perry512', a non-linear 
registration to the MNI152_T1_2mm 
template is performed with optionally 
ANTS or FSL, and the registration result is 
used to transform the atlas information 
into individual subject space. Based on this 
nonlinear registration any atlas defined on 
the MNI152 template can be used to 
parcellate the subject's brain, e.g., 
cytoarchitectonic information from Julich-
Brain. Next, the central step in this 
workflow is performed: whole-brain fibre-
tractography using tckgen with ACT to 
control for anatomical plausibility of 
constructed tracks using information from 
the tissue-segmented image 43. As 
additional plausibility criteria, tracks are 
truncated and re-tracked if a poor 
structural termination is encountered, 
respectively cropped when they hit the 
gray-matter-white-matter interface and 
when they exceed a length of 250 mm. 
Seed points are determined dynamically 
using the SIFT model 44. If the number of 
tracks to be generated is not manually 
specified, it is set to 500*N*(N-1), where N 
is the number of brain regions in the 
parcellation. After a whole-brain 
tractogram has been generated, SIFT2 44 is 

used next to filter tractography results to 
determine streamline weights. SIFT2 
optimises per-streamline cross-section 
multipliers to match a whole-brain 
tractogram to fixel-wise fibre densities. As 
last step of the MRtrix workflow, 
tck2connectome is used to aggregate the 
whole brain tractogram into a region-by-
region connectome matrix using the 
specified region parcellation. In addition to 
outputting the sum of streamline weights 
for each region pair, also the mean 
streamline lengths between each region is 
output. Optionally, the workflow also 
outputs track density images, which are 
useful for visualising and evaluating the 
results of tractography. 
 
thevirtualbrain/tvb-pipeline-fmriprep 
 
The fMRI workflow relies on fmriprep, 
which is a preprocessing pipeline for fMRI 
data that is relatively robust to variation in 
scan acquisition protocols, sequence 
parameters, or presence of fieldmaps for 
artifact correction 42,47. A characteristic 
feature of fmriprep is its "glass box" 
philosophy, according to which reports for 
visual verification are produced after 
important processing steps. This is an 
important feature as many steps of MRI 
preprocessing pipelines are susceptible to 
errors and verification is therefore 
generally recommended after major steps. 
The workflow combines the following 
software: FreeSurfer, FSL, AFNI, ANTS, BIDS 
validator and ICA-AROMA. Auxiliary tools 
are: Python (miniconda), pandoc, SVGO, 
neurodebian and git. As input the 
workflow requires data to be 
in BIDS format, and it must include at least 
one T1w structural image and one fMRI 
series. Output contains preprocessed fMRI 
data, as well as noise components 
estimated with independent component 
analysis, which are used to remove 
associated variance from the fMRI data 
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during the tvb-pipeline-converter 
workflow. The following processing steps 
are performed: T1w volumes are corrected 
for intensity non-uniformity using 
N4BiasFieldCorrection and skull-stripped 
using antsBrainExtraction.sh. Brain 
surfaces are reconstructed using 
FreeSurfer's recon-all, and the temporary 
brain mask is refined to reconcile ANTs-
derived and FreeSurfer-derived 
segmentations of the cortical gray-matter 
of Mindboggle. Spatial normalization to 
the ICBM 152 Nonlinear Asymmetrical 
template version 2009c is performed 
through nonlinear registration with the 
antsRegistration tool, using brain-
extracted versions of both T1w volume and 
template. Brain tissue segmentation of 
cerebrospinal fluid (CSF), white-matter 
(WM) and gray-matter (GM) is performed 
on the brain-extracted T1w using FSL FAST. 
Functional data is slice time corrected 
using 3dTshift from AFNI and motion 
corrected using mcflirt from FSL. Distortion 
correction is performed using an 
implementation of the TOPUP technique 
using 3dQwarp. This is followed by co-
registration to the corresponding T1w 
using boundary-based registration with 
nine degrees of freedom, using bbregister 
from FreeSurfer. Motion correcting 
transformations, field distortion correcting 
warp, BOLD-to-T1w transformation and 
T1w-to-template (MNI) warp are 
concatenated and applied in a single step 
using antsApplyTransforms using Lanczos 
interpolation. Physiological noise 
regressors are extracted applying 
CompCor. Principal components are 
estimated for the two CompCor variants: 
temporal (tCompCor) and anatomical 
(aCompCor). A mask to exclude signal with 
cortical origin is obtained by eroding the 
brain mask, ensuring it only contained 
subcortical structures. Six tCompCor 
components are then calculated including 
only the top 5% variable voxels within that 

subcortical mask. For aCompCor, six 
components are calculated within the 
intersection of the subcortical mask and 
the union of CSF and WM masks calculated 
in T1w space, after their projection to the 
native space of each functional run. Frame-
wise displacement is calculated for each 
functional run using the implementation of 
Nipype. ICA-based Automatic Removal Of 
Motion Artifacts (AROMA) was used to 
generate aggressive noise regressors as 
well as to create a variant of data that is 
non-aggressively denoised (see section 
thevirtualbrain/tvb-pipeline-converter for 
details on aggressive vs. non-aggressive 
cleaning). For details, please refer to 
fmriprep's documentation 
(https://fmriprep.readthedocs.io/). 
 
thevirtualbrain/tvb-pipeline-converter 
 
The third container of the TVB image 
processing pipeline takes the outputs of 
the first two containers as input and 
outputs TVB-ready BNM connectomes in 
BIDS format (Supplementary Table 1) and 
in native TVB-ready format 
(Supplementary Table 2). Outputs include 
SC, FC, EEG/MEG 
(magnetoencephalography) projection 
matrices, and brain surface triangulations. 
As first step, the workflow performs what 
fmriprep documentation calls "non-
aggressive" cleaning of motion artefacts. 
Following its glass box philosophy, 
fmriprep involves the researcher in critical 
decisions about the denoising strategy, as 
it can have considerable effects on the 
ensuing analyses. To this end, fmriprep 
provides both aggressively and non-
aggressively denoised fMRI. The output of 
the fmriprep workflow already contains 
ICA-AROMA denoised 4D NIFTI files 
mapped to MNI space. Here, the converter 
container performs non-aggressive 
denoising following the approach 
described in Pruim et al. 48 using the 
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independent components (ICs) together 
with their classification obtained in the 
previous step. ICA-AROMA classifies ICs 
into movement-related and movement-
unrelated ICs. It does not require manual 
training of the classifier--the classifier is 
already trained using four theoretically 
motivated spatial and temporal features: 
high-frequency content, correlation with 
realignment parameters, edge fraction, 
and CSF fraction of each IC 48. With 
aggressive denoising the entire temporal 
waveform of movement-related ICs is 
regressed from the data, analogous to the 
commonly done regression of nuisance 
parameter time courses (like mean global 
signal, mean tissue class signal, frame-wise 
displacement, motion parameters) from 
the data. Critically, all variance associated 
with such "nuisance" time courses is 
removed, including shared variance with 
actual brain signals. This is problematic, 
because global fMRI time courses often 
share a lot of variance with neural activity: 
even if two signals originate from different 
locations in the brain, they may still be 
highly correlated. Therefore, regressing 
out global signals likely removes signals of 
interest 49,50. As an alternative, the non-
aggressive approach based on ICA-AROMA 
is more conservative by first performing a 
regression on the full set of IC time series, 
including both signal and noise ICs. Then, 
to clean the data, only the motion-related 
regressors are subtracted from the data, 
which specifically removes variance 
associated with motion-related-ICs that is 
not shared by the remaining ICs. 
Problematically, with this non-aggressive 
approach motion-related dynamics that 
were not identified as such are specifically 
retained in the data. Conversely, as 
mentioned, the drawback of aggressive 
denoising is that it may remove shared 
variance between signal and noise. To 
clean fMRI data non-aggressively the 
workflow uses fsl_regfilt with the provided 

AROMA ICs and a list of (motion-related) 
ICs to reject. After this step, further 
nuisance regression may be performed (if 
it fits the study design) as well as removal 
of linear trends and high-pass filtering. It is, 
however, important that during such a 
second regression step variables 
correlated with motion are not used as 
regressors, as this may re-introduce 
motion-related waveform components 
into the time series.  
After denoising, the converter computes 
region-average fMRI time courses by 
resampling the brain parcellation to fMRI 
resolution and averaging over all voxel 
time series in each region. The converter 
also outputs cortical surfaces, which are 
used for detailed surface simulations and 
for EEG or MEG source modelling, e.g. in 
order to extract region-average EEG or 
MEG source activity, which can be used to 
constrain BNM dynamics 51. The converter 
merges the left and right hemisphere 
cortical surface triangulations 
reconstructed by FreeSurfer and generates 
a mapping between each vertex and the 
large-scale regions of the brain atlas. Each 
vertex of the cortical white matter and pial 
surface triangulations are associated with 
the region-label of the region at that 
location. This step is carried out with HCP 
Connectome Workbench for atlases that 
are defined in volumes (e.g., "aal", "aal2" 
"craddock200", "craddock400", 
"perry512", atlas names as used in MRtrix 
workflow source codes) and outputs a 
GIFTI label file for each hemisphere. For 
atlases defined on surfaces (e.g., 
"desikan", "destrieux", "hcpmmp1"), the 
'annot' files from FreeSurfer are used to 
obtain the region mapping. The following 
atlases are currently natively supported, 
for other atlases the workflow needs to be 
adapted: "aal", "aal2", "craddock200", 
"craddock400", "desikan", "destrieux", 
"hcpmmp1", "perry512".   
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Next, the MNE toolbox 52 is used to 
compute forward and inverse models for 
electromagnetic source imaging. First, 
surfaces are decimated to 30,000 triangles 
and the region-mapping is obtained by 
nearest neighbor interpolation in the 
original high-resolution surface. For the 
head model, BEM surfaces using the 
FreeSurfer watershed algorithm are 
constructed. To make the workflow 
automatic, standard EEG montage 
locations are projected onto the individual 
head surfaces. The outputs of this step are 
a projection or lead-field matrix (LFM), EEG 
sensor location coordinates, and a 
mapping between surface vertices and 
large-scale regions. The LFM has the 
dimensions M x N, with M being the 
number of vertices on the cortical surface 
and N the number of EEG sensors. Next, 
surfaces are exported: the downsampled 
pial surface from FreeSurfer (used to 
define source space) as well as the BEM 
surfaces of the inside and the outside of 
the skull and the scalp. Finally, the 
converter outputs the SC weights and 
distances matrices as well as region 
centroids, average orientations (average 
over all vertex-normals), surface areas, and 
two files that indicate to which hemisphere 
each region belongs and whether it is a 
cortical or a subcortical region. All output 
files are plaintext ASCII files that are zipped 
for uploading to TVB. As last step, the 
converter generates metadata for the BIDS 
output (see Supplementary Note: 
Metadata annotations). Supplementary 
Table 1 summarizes the folder and 
filename structure in BIDS format and 
Supplementary Table 2 summarizes folder 
and filename structure for outputs in TVB 
format, which are all stored in the output 
file "TVB_output.zip" that can be imported 
into TVB using the "Upload Connectivity 
ZIP" functionality of TVB.  
 
Multiscale Co-Simulation 

 
Multiscale Co-Simulation is currently 
implemented in the form of two toolboxes: 
the TVB-Multiscale toolbox and the Parallel 
CoSimulation toolbox (Table 1). Both are 
based on common concepts and 
architectures, but they are independently 
developed to focus on different goals: TVB-
Multiscale focusses on rapid prototyping of 
scientific use cases while Parallel 
CoSimulation focusses on the optimization 
of co-simulation performance. 
In order to couple the small scale (NEST) 
with the large scale (TVB), TVB NMM 
equations are coupled with NEST single 
neuron equations. The coupling can be 
unidirectional, i.e., one scale provides 
input to the other scale, or bidirectional, 
i.e., both scales provide input to one 
another. The bidirectional case enables to 
"substitute" large-scale NMMs by small-
scale spiking networks to simulate one or 
more specific populations of a BNM on a 
finer level. Large-scale inputs to the 
substituted populations will then be 
forwarded to the small-scale network, 
while small-scale activity will be averaged, 
or transformed with a custom-defined 
transformation function, and forwarded as 
input to the connected large-scale nodes. 
For example, such a transformation 
function may convert moment-to-moment 
firing rates of a large-scale NMM into spike 
trains by sampling from Poisson 
distributions centered at these firing rates, 
which can then be used to drive spiking 
network models. Vice versa, spike trains of 
a population of neurons may be used to 
compute instantaneous population firing 
rates, which are then used to drive large-
scale NMMs. Like in the case of large-scale-
only BNMs, it is possible to subsequently 
input simulated neural activity into 
forward models to simulate typical 
neuroimaging signals like fMRI or EEG. The 
TVB to NEST interface is based on the 
creation of TVB "proxy" nodes within the 
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spiking network model. Proxy nodes are 
NEST stimulation devices that are used to 
inject spikes or currents into NEST neurons 
in order to simulate inputs from the large 
scale to the small scale at a particular brain 
region. It is possible to generate currents 
or spike trains with a desired first order 
(mean firing rate) or second order statistics 
(correlations) such that the statistics of the 
produced spikes or currents follow the 
corresponding statistics of the large-scale 
population activity. Proxy nodes can be 
coupled to NEST spiking networks with 
user defined connection weights and 
delays, in order to simulate the large-scale 
features of coupling on the small scale. To 
compute inputs from NEST to TVB, NEST 
recording devices are used to aggregate 
the activity of spiking neuron populations. 
Multiscale Co-Simulation gives the user 
flexibility for custom configuration of co-
simulations regarding the network 
structures, the state variables used for 
coupling, the transformation functions and 
the devices for computing and applying 
inputs, the allocation of computational 
resources, and the storage of results. 
The Parallel CoSimulation toolbox is 
currently under development to optimize 
the performance of co-simulation as well 
as for integration with the TVB-Multiscale 
toolbox. The idea for optimization is to 
reduce the number of costly 
communication operations between NEST 
and TVB, because inputs often do not need 
to be exchanged in every single time step 
of the model integration. Rather, it is often 
the case that the model does not require 
instantaneous interactions, depending on 
the axonal transmission delays in the 
network. The Parallel CoSimulation 
toolbox therefore employs a strategy 
where each simulator integrates their 
respective model equations independently 
and in parallel for a number of time steps, 
until again an exchange of inputs becomes 
unavoidable. The toolbox uses MPI 

(Message Passing Interface) for 
communication and is implemented in a 
modular fashion: independent modules for 
simulation and for input transformation 
enable scaling over multiple compute 
nodes and to allocate different 
computational resources to each module. 
The communication between simulators is 
implemented using Message Passing 
Interface (MPI), and synchronization is 
taken care by the mediating 
transformation modules, in which the 
receiving data are also adapted to the 
appropriate inputs’ format of each 
simulator. The simulators and the 
transformers are encapsulated in 
independent modules allowing for 
flexibility regarding the components of any 
particular instance of co-simulation, as 
well as for scaling co-simulation to multiple 
supercomputer nodes. A benchmark of the 
toolbox is provided in Supplementary 
Note: TVB Multiscale Co-Simulation 
benchmark. 
 
High-Performance implementations of TVB 
 
For TVB-HPC the domain-specific language 
RateML was developed, which allows to 
specify custom NMMs without requiring 
knowledge about how to optimally 
implement such models. Python code for 
CPU and CUDA code for GPU is 
automatically produced from RateML 
model specifications. The resulting Python 
code uses Numba vectorization 53 to 
integrate the NMMs. The resulting CUDA 
code uses the highly parallel architecture 
of modern GPUs by spawning one thread 
for every simulated parameter set, 
allowing to simulate multiple models in 
parallel. RateML is based on the domain-
specific language 'LEMS' 19, which supports 
the declarative description of model 
components in a concise XML 
representation. The PyLEMS expression 
parser is used to check and parse 
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mathematical expressions 19. Exemplary 
RateML ports of the TVB NMMs Epileptor, 
Kuramoto, 2D Oscillator, Montbrio and 
ReducedWongWang are provided with the 
main TVB software package. 
Code with model equations is mapped to 
generalized universal function (gufuncs) 
using Numba's guvectorize decorator, 
which compiles a pure Python function 
directly into machine code that can be 
used to operate on NumPy arrays. An 
example of a Numba generated 
guvectorize function is displayed in Listing 
1. In this example the gufunc 
_numba_dfun_Epileptor accepts two n and 
m sized float64 arrays and 19 scalars as 
input and returns a n sized float64 array. 
The benefit of writing NumPy gufuncs with 
Numba's decorators, is that it 
automatically uses parallel operations such 
as reduction, accumulation and 
broadcasting to efficiently implement an 
algorithm. Please see Supplementary 
Methods: TVB-HPC for further notes on the 
implementation and a benchmark. 
 
@guvectorize([(float64[:], 
float64[:], (float64 * 19), 
float64[:])],  
    '(n),(m)' + ',()'*19 + '->(n)', 
nopython=True) 
def _numba_dfun_EpileptorT(vw, 
coupling, a, b, c, d, r, s, x0, Iext, 
slope,  
    Iext2, tau, aa, bb, Kvf, Kf, Ks, tt, 
modification, local_coupling, dx): 
 
  c_pop1 = coupling[0] 
  c_pop2 = coupling[1] 
  c_pop3 = coupling[2] 
  c_pop4 = coupling[3] 
    ... # calculate derivatives 
     
    return dx 
Listing 1. Example of a gufunc header for the 
epileptor model, where vw holds the input and dx 
the computed output derivatives. 

Fast_TVB was developed in C and makes 
extensive use of several optimization 
techniques to increase the speed of BNM 
simulation. It uses Single Instruction, 

Multiple Data instructions where the same 
operation is concurrently applied to 
multiple values contained in one large 
register. In the central integration loop no 
function calls are made to avoid possible 
overhead and instead all necessary code is 
either directly written into the loop or 
inlined. Inner loops are unrolled, jammed 
and bound to avoid "end of loop" tests and 
branch penalties. Intermediary results are 
re-used in other parts of the algorithm and 
not computed again. For example, some 
terms and expressions occur multiple 
times in the equations or they resolve to a 
constant and therefore only need to be 
computed once and not repeatedly in each 
time step. To reduce memory-related 
performance bottlenecks and cache 
failures, data to compute coupling inputs is 
organized in an efficient ring-buffer that 
stores related data in close locality. SC is 
stored in a sparse layout that scales linearly 
with the number of connections (and not 
quadratically as when stored as array), 
which enables to hold large BNMs 
efficiently in memory. The computation of 
coupling inputs also requires that the 
program steps through distant memory 
locations (in order to fetch time-delayed 
state variables), which is why pointer 
tables that directly link to the required 
addresses are used instead of array 
indexing tables, which saves one 
dereferencing operation for each memory 
access. Input and output operations 
happen only before or after the main 
simulation to avoid waiting time for 
devices. Further information and a 
benchmark are provided in Supplementary 
Note: Fast_TVB. 
 
Bayesian Virtual Epileptic Patient 
 
Bayesian inference is used to compute 
posterior probability distributions for 
parameters of TVB's Epileptor NMM 21–

23,54. The Epileptor was developed on the 
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basis of a taxonomy analysis of seizure 
dynamics that has shown that a system of 
five linked state variables is sufficient to 
describe onset, time course and offset of 
ictal-like discharges and their recurrence 
21. A detailed analysis over 2000 focal-
onset seizures from multiple centers has 
shown that the Epileptor model is able to 
realistically simulate the most dominant 
dynamics in seizure-like events 55. The 
target of inference is to obtain posterior 
distributions of the excitability parameter 
for every brain region in order to assemble 
patient-specific epileptogenicity maps; 
furthermore, initial conditions, global 
coupling, and noise parameters are fitted 
(in total 3N+3 parameters for N brain 
regions). The excitability parameter 
controls whether the Epileptor shows 
epileptogenic behavior or not and the 
estimated values are used to classify brain 
regions into three categories: 
epileptogenic zones (EZ), which can 
autonomously trigger seizures; 
propagation zones (PZ), which do not 
trigger seizures autonomously but may be 
recruited during the seizure evolution; and 
healthy zones (HZ), where no seizures 
occur.  
As exact posterior inference in such high-
dimensional models is intractable, 
approximate methods are used, e.g., 
Markov Chain Monte Carlo (MCMC), which 
enables to generate correlated samples 
that converge to a (potentially complex) 
target distribution. Gradient-based MCMC 
algorithms like Hamilton Monte Carlo 
provide efficient convergence to high-
dimensional target distributions, but their 
performance is highly sensitive to 
hyperparameters, which often need to be 
re-tuned to arrive at the desired target 
distribution, which is solved in BVEP by 
using No-U-Turn Samplers for adaptive 
self-tuning of hyperparameters 56. 
Alternatively, Automatic Differentiation 
Variational Inference (ADVI) is used to 

approximate the posterior by first positing 
a family of densities and then finding a 
member of that family that is closest to the 
target distribution as measured by 
Kullback-Leibler divergence 57.  
BVEP allows to integrate clinical 
information as priors, such as a patient’s 
SC, or lesions detected in MRI. Priors for 
the excitability parameter are either 
uninformative (e.g., a uniform distribution 
over the entire range for EZ, PZ and HZ), or 
they can express clinical hypotheses (e.g., 
by extending a distribution only over one 
category) or for including observations 
(e.g., when the region was recorded to 
show seizure activity, the range for HZ can 
be excluded). The fitting result is evaluated 
using information criteria and approximate 
leave-one-out cross-validation metrics to 
assess the model's ability in predicting data 
it was not trained for. Model evidence is 
used to compare different clinical 
hypotheses and to further inform 
physicians before therapeutic 
interventions. BVEP is implemented in the 
open-source probabilistic programming 
language tools Stan (mc-stan.org) and 
PyMC3 (docs.pymc.io), which use 
automatic differentiation to compute 
gradients of specified model density 
functions for NUTS and ADVI. The 
workflow was tested with ground-truth 
synthetic data for two patients with 
symptomatic and asymptomatic seizures 
where it was possible to accurately and 
efficiently infer the spatial map of 
epileptogenicity for all brain regions 23. See 
Supplementary Note: Bayesian Virtual 
Epileptic Patient for more information. 
 
TVB Mouse Brains 
 
For TVMB 24,26 tracer-based mouse SC at 
different resolutions was constructed from 
the Allen Mouse Brain Connectivity Atlas 
(Oh et al., 2014) with a maximum 
resolution of 50 μm, yielding 540 brain 
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regions. The "Mouse Stroke" workflow 
associates structural alterations related to 
stroke with corresponding changes in FC 
and population synchronization 27. To 
model stroke and subsequent 
rehabilitation, a pre-defined fraction of 
incoming connections is removed, e.g., 0 % 
corresponds to no stroke, while 100 % 
would correspond to a devastating stroke 
that destroyed all incoming connections to 
the region. Similarly, recovery from stroke 
is modelled by compensatory rewiring 58 
where the connection strengths of the 
non-damaged connections are increased 
relative to healthy connectivity. Different 
stroke connectomes are produced in this 
manner and the resulting FC is then fitted 
and compared with empirical data. By 
testing different re-wiring scenarios, the 
relative importance of compensatory 
rewiring in different connections for re-
establishing healthy FC is studied. For 
these BNMs the Kuramoto model 59 was 
used, which is a phenomenological model 
for emergent group dynamics of weakly 
coupled oscillators that we used previously 
to link SC with oscillatory dynamics in 
different modalities 60,61.   
 
TVB-ready data 
 
This dataset contains MRI derivatives from 
patients who were diagnosed with either a 
glioma, developing from glial cells, or a 
meningioma, developing in the meninges, 
as well as healthy controls. Patients were 
recruited from Ghent University Hospital 
(Belgium) between May 2015 and October 
2017 on the day before each patient's 
tumor surgery. Patients were eligible if 
they (1) were at least 18 years old, (2) had 
a supratentorial meningioma (WHO grade 
I or II) or glioma (WHO grade II or III) brain 
tumor, (3) were able to complete 
neuropsychological testing, and (4) were 
medically approved to undergo MRI 
investigation. Partners were also asked to 

participate in the study to constitute a 
group of control subjects that suffer from 
emotional distress comparable to that of 
the patients. Data from 11 glioma patients 
(mean age 47.5 y, SD = 11.3; 4 females), 14 
meningioma patients (mean age 60.4 y, SD 
= 12.3; 11 females), and 11 healthy 
partners (mean age 58.6 y, SD = 10.3; 4 
females) was collected. All participants 
received detailed study information and 
gave written informed consent before 
study enrolment. This research was 
approved by the Ethics Committee at 
Ghent University Hospital. From all 
participants, three types of MRI scans were 
obtained using a Siemens 3T Magnetom 
Trio MRI scanner: T1-MPRAGE anatomic 
images, resting-state functional echo-
planar imaging data, a multishell high 
angular resolution diffusion-weighted MRI 
scan, and two DWI b = 0 s/mm2 images 
were collected with reversed phase-
encoding blips for the purpose of 
correcting susceptibility-induced 
distortions. Further information on the 
dataset, preprocessing and analysis can be 
found in the original journal articles using 
this dataset 29,30 and in the dataset 
publication on EBRAINS KnowledgeGraph 
28. 

Data availability 
 
The datasets generated during and/or 
analysed during the current study are 
available in the EBRAINS KnowledgeGraph 
repository, search.kg.ebrains.eu. 
KnowledgeGraph is a DOI-minting 
repository where EBRAINS data and 
software services are indexed and/or 
archived. To share personal data among 
researchers subject to national or 
international data protection laws (e.g., 
the General Data Protection Regulation of 
the European Union) protected 
environments and workflows as well as 
data sharing agreement templates were 
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created (Supplementary Note: Data 
protection in the TVB on EBRAINS cloud). 

Code availability 
 
All software codes presented in this article 
have open-source licenses and can be 
freely downloaded from GitHub (Table 1). 
The EBRAINS database service 
KnowledgeGraph (search.kg.ebrains.eu) is 
a DOI-minting repository where all data 
and software services are indexed and/or 
archived. Source codes are deployed as 
cloud services that can be used on 
ebrains.eu and as standalone download 
versions that can be pulled as container 
images from Docker Hub (Table 1). 
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